Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(12): e9621, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540077

RESUMO

Long-lived monogamous species gain long-term fitness benefits by equalizing effort during biparental care. For example, many seabird species coordinate care by matching foraging trip durations within pairs. Age affects coordination in some seabird species; however, the impact of other intrinsic traits, including personality, on potential intraspecific variation in coordination strength is less well understood. The impacts of pair members' intrinsic traits on trip duration and coordination strength were investigated using data from saltwater immersion loggers deployed on 71 pairs of wandering albatrosses Diomedea exulans. These were modeled against pair members' age, boldness, and their partner's previous trip duration. At the population level, the birds exhibited some coordination of parental care that was of equal strength during incubation and chick-brooding. However, there was low variation in coordination between pairs and coordination strength was unaffected by the birds' boldness or age in either breeding stage. Surprisingly, during incubation, foraging trip duration was mainly driven by partner traits, as birds which were paired to older and bolder partners took shorter trips. During chick-brooding, shorter foraging trips were associated with greater boldness in focal birds and their partners, but age had no effect. These results suggest that an individual's assessment of their partner's capacity or willingness to provide care may be a major driver of trip duration, thereby highlighting the importance of accounting for pair behavior when studying parental care strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35742745

RESUMO

The lack of literature on Indigenous conceptions of health and the social determinants of health (SDH) for US Indigenous communities limits available information for Indigenous nations as they set policy and allocate resources to improve the health of their citizens. In 2015, eight scholars from tribal communities and mainstream educational institutions convened to examine: the limitations of applying the World Health Organization's (WHO) SDH framework in Indigenous communities; Indigenizing the WHO SDH framework; and Indigenous conceptions of a healthy community. Participants critiqued the assumptions within the WHO SDH framework that did not cohere with Indigenous knowledges and epistemologies and created a schematic for conceptualizing health and categorizing its determinants. As Indigenous nations pursue a policy role in health and seek to improve the health and wellness of their nations' citizens, definitions of Indigenous health and well-being should be community-driven and Indigenous-nation based. Policies and practices for Indigenous nations and Indigenous communities should reflect and arise from sovereignty and a comprehensive understanding of the nations and communities' conceptions of health and its determinants beyond the SDH.


Assuntos
Determinantes Sociais da Saúde , Fatores Sociais , Nível de Saúde , Humanos
3.
J R Soc Interface ; 18(176): 20200966, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784882

RESUMO

Computer simulations of individual-based models are frequently used to compare strategies for the control of epidemics spreading through spatially distributed populations. However, computer simulations can be slow to implement for newly emerging epidemics, delaying rapid exploration of different intervention scenarios, and do not immediately give general insights, for example, to identify the control strategy with a minimal socio-economic cost. Here, we resolve this problem by applying an analytical approximation to a general epidemiological, stochastic, spatially explicit SIR(S) model where the infection is dispersed according to a finite-ranged dispersal kernel. We derive analytical conditions for a pathogen to invade a spatially explicit host population and to become endemic. To derive general insights about the likely impact of optimal control strategies on invasion and persistence: first, we distinguish between 'spatial' and 'non-spatial' control measures, based on their impact on the dispersal kernel; second, we quantify the relative impact of control interventions on the epidemic; third, we consider the relative socio-economic cost of control interventions. Overall, our study shows a trade-off between the two types of control interventions and a vaccination strategy. We identify the optimal strategy to control invading and endemic diseases with minimal socio-economic cost across all possible parameter combinations. We also demonstrate the necessary characteristics of exit strategies from control interventions. The modelling framework presented here can be applied to a wide class of diseases in populations of humans, animals and plants.


Assuntos
Simulação por Computador , Epidemias , Animais , Doenças Endêmicas , Humanos , Modelos Biológicos , Vacinação
4.
BMC Ecol Evol ; 21(1): 25, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33583398

RESUMO

BACKGROUND: Animals use diverse antipredator mechanisms, including visual signalling of aversive chemical defence (aposematism). However, the initial evolution of aposematism poses the problem that the first aposematic individuals are conspicuous to predators who have not learned the significance of the warning colouration. In one scenario, aposematism evolves in group-living species and originally persisted due to kin selection or positive frequency-dependent selection in groups. Alternatively, group-living might evolve after aposematism because grouping can amplify the warning signal. However, our current understanding of the evolutionary dynamics of these traits is limited, leaving the relative merit of these scenarios unresolved. RESULTS: We used a phylogenetic comparative approach to estimate phenotypic evolutionary models to enable inferences regarding ancestral states and trait dynamics of grouping and aposematic colouration in a classic model system (caterpillars). We find strong support for aposematism at the root of the clade, and some (but weaker) support for ancestral solitary habits. Transition rates between aposematism and crypsis are generally higher than those between group-living and solitary-living, suggesting that colouration is more evolutionarily labile than aggregation. We also find that the transition from group-living to solitary-living states can only happen in aposematic lineage, suggesting that aposematism facilitates the evolution of solitary caterpillars, perhaps due to the additional protection offered when the benefits of grouping are lost. We also find that the high frequency of solitary, cryptic caterpillars is because this state is particularly stable, in that the transition rates moving towards this state are substantially higher than those moving away from it, favouring its accumulation in the clade over evolutionary time. CONCLUSIONS: Our results provide new insights into the coevolution of colour and aggregation in caterpillars. We find support for an aposematic caterpillar at the root of this major clade, and for the signal augmentation hypothesis as an explanation of the evolution of aposematic, group-living caterpillars. We find that colouration is more labile than aggregation behaviour, but that the combination of solitary and cryptic habits is particularly stable. Finally, our results reveal that the transitions from group-living to solitary-living could be facilitated by aposematism, providing a new link between these well-studied traits.


Assuntos
Mimetismo Biológico , Comportamento Predatório , Animais , Evolução Biológica , Hábitos , Larva , Filogenia
5.
Proc Biol Sci ; 288(1942): 20202825, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33434455

RESUMO

Dispersal polymorphism and mutation play significant roles during biological invasions, potentially leading to evolution and complex behaviour such as accelerating or decelerating invasion fronts. However, life-history theory predicts that reproductive fitness-another key determinant of invasion dynamics-may be lower for more dispersive strains. Here, we use a mathematical model to show that unexpected invasion dynamics emerge from the combination of heritable dispersal polymorphism, dispersal-fitness trade-offs, and mutation between strains. We show that the invasion dynamics are determined by the trade-off relationship between dispersal and population growth rates of the constituent strains. We find that invasion dynamics can be 'anomalous' (i.e. faster than any of the strains in isolation), but that the ultimate invasion speed is determined by the traits of, at most, two strains. The model is simple but generic, so we expect the predictions to apply to a wide range of ecological, evolutionary, or epidemiological invasions.


Assuntos
Características de História de Vida , Reprodução , Evolução Biológica , Aptidão Genética , Modelos Biológicos , Fenótipo , Polimorfismo Genético , Dinâmica Populacional
6.
J Anim Ecol ; 89(7): 1581-1592, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424913

RESUMO

Allee effects occur when individual or population survival decreases due to populations being small or sparse. A key mechanism underlying Allee effects is difficulty in finding mates at low densities. Species may be particularly vulnerable to mate-finding Allee effects if females rely on an abundance of males to reproduce successfully. In sexually cannibalistic species, females may consume males before or after copulation, potentially reducing the supply of males to the point where a mate-finding Allee effect occurs. In this study, we investigate the extent to which sexual cannibalism can modulate mate-finding Allee effects, and the conditions under which sexual cannibalism is likely to be particularly detrimental to population viability. We created an individual-based model that tracked specific females throughout the breeding season and used extinction risk and per capita growth rate to measure the strength of the Allee effects. We varied both founder population size and mate encounter rate independently of each other to expose the mechanism driving the Allee effects. We also analysed how cannibalism-derived female fecundity benefits affected extinction risk. We found that sexual cannibalism could lead to high extinction risk, particularly when cannibalism occurred before copulation, founder population size was small and mate encounter rates were low. However, post-copulatory cannibalism reduced extinction risk, if cannibalism increased female fecundity enough. We found that there were strong threshold effects, in which small changes in encounter rate could strongly alter population extinction risk. We find that sexual cannibalism is likely to negatively impact population survival as population size and mate encounter rate decrease. This may be exacerbated if male quality declines and female hunger increases in declining populations. As many top invertebrate predators, such as spiders and mantises, are sexually cannibalistic, this may have ecosystem-wide impacts. We also suggest that other reproductive behaviours, such as rejecting all but high-quality mates or requiring multiple mates to ensure fertility, are also likely to cause mate-finding Allee effects when habitat quality degrades.


Assuntos
Canibalismo , Aranhas , Animais , Ecossistema , Feminino , Masculino , Reprodução , Comportamento Sexual Animal
7.
Sci Rep ; 10(1): 7953, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409646

RESUMO

All organisms grow. Numerous growth functions have been applied to a wide taxonomic range of organisms, yet some of these models have poor fits to empirical data and lack of flexibility in capturing variation in growth rate. We propose a new VBGF framework that broadens the applicability and increases flexibility of fitting growth curves. This framework offers a curve-fitting procedure for five parameterisations of the VBGF: these allow for different body-size scaling exponents for anabolism (biosynthesis potential), besides the commonly assumed 2/3 power scaling, and allow for supra-exponential growth, which is at times observed. This procedure is applied to twelve species of diverse aquatic invertebrates, including both pelagic and benthic organisms. We reveal widespread variation in the body-size scaling of biosynthesis potential and consequently growth rate, ranging from isomorphic to supra-exponential growth. This curve-fitting methodology offers improved growth predictions and applies the VBGF to a wider range of taxa that exhibit variation in the scaling of biosynthesis potential. Applying this framework results in reliable growth predictions that are important for assessing individual growth, population production and ecosystem functioning, including in the assessment of sustainability of fisheries and aquaculture.


Assuntos
Tamanho Corporal , Modelos Biológicos , Animais , Especificidade da Espécie
8.
Nat Commun ; 10(1): 4716, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624268

RESUMO

Individual-based models, 'IBMs', describe naturally the dynamics of interacting organisms or social or financial agents. They are considered too complex for mathematical analysis, but computer simulations of them cannot give the general insights required. Here, we resolve this problem with a general mathematical framework for IBMs containing interactions of an unlimited level of complexity, and derive equations that reliably approximate the effects of space and stochasticity. We provide software, specified in an accessible and intuitive graphical way, so any researcher can obtain analytical and simulation results for any particular IBM without algebraic manipulation. We illustrate the framework with examples from movement ecology, conservation biology, and evolutionary ecology. This framework will provide unprecedented insights into a hitherto intractable panoply of complex models across many scientific fields.


Assuntos
Algoritmos , Ecologia/métodos , Ecossistema , Modelos Teóricos , Dinâmica Populacional , Animais , Simulação por Computador , Ecologia/estatística & dados numéricos , Meio Ambiente , Humanos , Especificidade da Espécie , Processos Estocásticos
9.
Proc Biol Sci ; 286(1909): 20190852, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31431159

RESUMO

House mice are a major ecosystem pest, particularly threatening island ecosystems as a non-native invasive species. Rapid advances in synthetic biology offer new avenues to control pest species for biodiversity conservation. Recently, a synthetic sperm-killing gene drive construct called t-Sry has been proposed as a means to eradicate target mouse populations owing to a lack of females. A factor that has received little attention in the discussion surrounding such drive applications is polyandry. Previous research has demonstrated that sperm-killing drivers are extremely damaging to a male's sperm competitive ability. Here, we examine the importance of this effect on the t-Sry system using a theoretical model. We find that polyandry substantially hampers the spread of t-Sry such that release efforts have to be increased three- to sixfold for successful eradication. We discuss the implications of our finding for potential pest control programmes, the risk of drive spread beyond the target population, and the emergence of drive resistance. Our work highlights that a solid understanding of the forces that determine drive dynamics in a natural setting is key for successful drive application, and that exploring the natural diversity of gene drives may inform effective gene drive design.


Assuntos
Tecnologia de Impulso Genético , Genes Sintéticos , Camundongos/fisiologia , Controle de Pragas/métodos , Roedores/fisiologia , Comportamento Sexual Animal , Animais , Ecossistema , Feminino , Espécies Introduzidas , Ilhas , Masculino , Espermatozoides
10.
J Theor Biol ; 473: 9-19, 2019 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31004613

RESUMO

We introduce a general theoretical description of a combination of defences acting sequentially at different stages in the predatory sequence in order to make predictions about how animal prey should best allocate investment across different defensive stages. We predict that defensive investment will often be concentrated at stages early in the interaction between a predator individual and the prey (especially if investment is concentrated in only one defence, then it will be in the first defence). Key to making this prediction is the assumption that there is a cost to a prey when it has a defence tested by an enemy, for example because this incurs costs of deployment or tested costs as a defence is exposed to the enemies; and the assumption that the investment functions are the same among defences. But if investment functions are different across defences (e.g. the investment efficiency in making resources into defences is higher in later defences than in earlier defences), then the contrary could happen. The framework we propose can be applied to other victim-exploiter systems, such as insect herbivores feeding on plant tissues. This leads us to propose a novel explanation for the observation that herbivory damage is often not well explained by variation in concentrations of toxic plant secondary metabolites. We compare our general theoretical structure with related examples in the literature, and conclude that coevolutionary approaches will be profitable in future work.


Assuntos
Modelos Biológicos , Comportamento Predatório/fisiologia , Animais , Herbivoria/fisiologia
11.
J Theor Biol ; 462: 194-209, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30300647

RESUMO

The defences used by organisms against predators display a great degree of variability. Defence phenotypes can differ substantially among individuals of the same species, and a single individual can itself deploy a variety of defences. Here, we use a mathematical model that includes mutation and selection to understand the evolutionary origin of this variability in a population of a species that deploys defences sequentially ("first" and "second" defences). Typically, the first defence evolves to have lower variance, i.e. appears more closely accumulated around the ideal phenotype, than the second defence (even when the breaching the first defence incurs more fitness loss than breaching the second defence with the other parameters the same for both defences). However, if the first defence is much less effective in repelling predators, or is much less tolerant of deviation from the ideal phenotype, then the first defence can evolve to have higher variance than the second. Other factors like mutation strength and the losses in the fitness when each defence fails also influence the defence variance. Larger mutation rate incurs larger equilibrium variances, and when the comparative importance in fitness of one defence increases, then the ratio between the variances of this defence and the other defence decreases. Sequentially acting defences are found in many organisms, so we encourage empirical research to test our theoretical predictions.


Assuntos
Comportamento Animal , Evolução Biológica , Reação de Fuga , Modelos Teóricos , Animais , Taxa de Mutação , Fenótipo
12.
Ecol Evol ; 8(13): 6663-6670, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038765

RESUMO

Some behaviours that typically increase fitness at the individual level may reduce population persistence, particularly in the face of environmental changes. Sexual cannibalism is an extreme mating behaviour which typically involves a male being devoured by the female immediately before, during or after copulation, and is widespread amongst predatory invertebrates. Although the individual-level effects of sexual cannibalism are reasonably well understood, very little is known about the population-level effects. We constructed both a mathematical model and an individual-based model to predict how sexual cannibalism might affect population growth rate and extinction risk. We found that in the absence of any cannibalism-derived fecundity benefit, sexual cannibalism is always detrimental to population growth rate and leads to a higher population extinction risk. Increasing the fecundity benefits of sexual cannibalism leads to a consistently higher population growth rate and likely a lower extinction risk. However, even if cannibalism-derived fecundity benefits are large, very high rates of sexual cannibalism (>70%) can still drive the population to negative growth and potential extinction. Pre-copulatory cannibalism was particularly damaging for population growth rates and was the main predictor of growth declining below the replacement rate. Surprisingly, post-copulatory cannibalism had a largely positive effect on population growth rate when fecundity benefits were present. This study is the first to formally estimate the population-level effects of sexual cannibalism. We highlight the detrimental effect sexual cannibalism may have on population viability if (1) cannibalism rates become high, and/or (2) cannibalism-derived fecundity benefits become low. Decreased food availability could plausibly both increase the frequency of cannibalism, and reduce the fecundity benefit of cannibalism, suggesting that sexual cannibalism may increase the risk of population collapse in the face of environmental change.

13.
Sci Rep ; 8(1): 10200, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976959

RESUMO

One of the first successes of neutral ecology was to predict realistically-broad distributions of rare and abundant species. However, it has remained an outstanding theoretical challenge to describe how this distribution of abundances changes with spatial scale, and this gap has hampered attempts to use observed species abundances as a way to quantify what non-neutral processes are needed to fully explain observed patterns. To address this, we introduce a new formulation of spatial neutral biodiversity theory and derive analytical predictions for the way abundance distributions change with scale. For tropical forest data where neutrality has been extensively tested before now, we apply this approach and identify an incompatibility between neutral fits at regional and local scales. We use this approach derive a sharp quantification of what remains to be explained by non-neutral processes at the local scale, setting a quantitative target for more general models for the maintenance of biodiversity.

14.
Am Nat ; 186(3): 376-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26655355

RESUMO

Genetic inheritance underpins evolutionary theories of aging, but the role that nongenetic inheritance plays is unclear. Parental age reduces the life span of offspring in a diverse array of taxa but has not been explained from an evolutionary perspective. We quantified the effect that maternal age had on the growth and maturation decisions, life history, rates of senescence, and life span of offspring from three Daphnia pulex clones collected from different populations. We then used those data to test general hypotheses proposed to explain maternal age effects on offspring life span. Three generations of breeding from young or old mothers produced dramatic differences in the life histories of fourth-generation offspring, including significant reductions in life span. The magnitude of the effect differed between clones, which suggests that genetic and nongenetic factors ultimately underpin trait inheritance and shape patterns of aging. Older parents did not transmit a senescent state to their offspring. Instead, offspring from older ancestors had increased early-life reproductive effort, which resulted in an earlier onset of reproductive senescence, and an increased rate of actuarial senescence, which shortened their life span. Our results provide a clear example of the need to consider multiple inheritance mechanisms when studying trait evolution.


Assuntos
Daphnia/crescimento & desenvolvimento , Daphnia/genética , Longevidade , Idade Materna , Envelhecimento/fisiologia , Animais , Evolução Biológica , Feminino , Estágios do Ciclo de Vida , Reprodução/fisiologia
15.
Int J Parasitol ; 45(14): 885-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432294

RESUMO

Amphibians are known as the most threatened vertebrate group. One of the outcomes of a species' extinction is the coextinction of its dependents. Here, we estimate the extinction risk of helminth parasites of South America anurans. Parasite coextinction probabilities were modeled, assuming parasite specificity and host vulnerability to extinction as determinants. Parasite species associated with few hosts were the most prone to extinction, and extinction risk varied amongst helminth species of different taxonomic groups and life cycle complexity. Considering host vulnerability in the model decreased the extinction probability of most parasites species. However, parasite specificity and host vulnerability combined to increase the extinction probabilities of 44% of the helminth species reported in a single anuran species.


Assuntos
Anuros/crescimento & desenvolvimento , Anuros/parasitologia , Extinção Biológica , Helmintos/crescimento & desenvolvimento , Animais , Helmintos/fisiologia , Especificidade de Hospedeiro , Modelos Estatísticos , Medição de Risco , América do Sul
16.
PLoS Comput Biol ; 11(3): e1004134, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25793889

RESUMO

Species abundance distributions (SAD) are probably ecology's most well-known empirical pattern, and over the last decades many models have been proposed to explain their shape. There is no consensus over which model is correct, because the degree to which different processes can be discerned from SAD patterns has not yet been rigorously quantified. We present a power calculation to quantify our ability to detect deviations from neutrality using species abundance data. We study non-neutral stochastic community models, and show that the presence of non-neutral processes is detectable if sample size is large enough and/or the amplitude of the effect is strong enough. Our framework can be used for any candidate community model that can be simulated on a computer, and determines both the sampling effort required to distinguish between alternative processes, and a range for the strength of non-neutral processes in communities whose patterns are statistically consistent with neutral theory. We find that even data sets of the scale of the 50 Ha forest plot on Barro Colorado Island, Panama, are unlikely to be large enough to detect deviations from neutrality caused by competitive interactions alone, though the presence of multiple non-neutral processes with contrasting effects on abundance distributions may be detectable.


Assuntos
Biodiversidade , Ecologia , Florestas , Modelos Biológicos , Dinâmica Populacional , Biologia Computacional , Panamá
17.
Proc Biol Sci ; 280(1771): 20131452, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24089332

RESUMO

Human societies, and their well-being, depend to a significant extent on the state of the ecosystems that surround them. These ecosystems are changing rapidly usually in response to anthropogenic changes in the environment. To determine the likely impact of environmental change on ecosystems and the best ways to manage them, it would be desirable to be able to predict their future states. We present a proposal to develop the paradigm of predictive systems ecology, explicitly to understand and predict the properties and behaviour of ecological systems. We discuss the necessary and desirable features of predictive systems ecology models. There are places where predictive systems ecology is already being practised and we summarize a range of terrestrial and marine examples. Significant challenges remain but we suggest that ecology would benefit both as a scientific discipline and increase its impact in society if it were to embrace the need to become more predictive.


Assuntos
Mudança Climática , Ecologia/métodos , Ecossistema , Previsões/métodos , Biologia de Sistemas/métodos , Evolução Biológica , Humanos , Modelos Biológicos , Incerteza
18.
PLoS One ; 8(7): e67871, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874460

RESUMO

Two important issues for conservation are the range expansion of species as a result of climate change and the invasion of exotic species. Being able to predict the rate at which species spread is key for successful management. In deterministic models, the invasion speed of a polymorphic population can be faster than that of any of the component phenotypes, and these "anomalous" invasion speeds persist even when the mutation rate between phenotypes is vanishingly small. Here we investigate whether the same phenomenon is observed in a model with demographic stochasticity. The model that we use is discrete in time and space and we carry out numerical simulations to determine the invasion speed of a population that has two morphs which differ in their dispersal abilities. We find that anomalous speeds are observed in the stochastic model, but only when the carrying capacity of the population is large or the mutation rate between morphs is high enough. These results suggest that only species with large population sizes, such as many insect species, may be able to invade faster if they are polymorphic than if there is only a single morph present in the population.


Assuntos
Modelos Teóricos , Dinâmica Populacional , Animais , Insetos , Densidade Demográfica
19.
PLoS One ; 7(10): e47141, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23082145

RESUMO

Species may be driven extinct by climate change, unless their populations are able to shift fast enough to track regions of suitable climate. Shifting will be faster as the proportion of suitable habitat in the landscape increases. However, it is not known how the spatial arrangement of habitat will affect the speed of range advance, especially when habitat is scarce, as is the case for many specialist species. We develop methods for calculating the speed of advance that are appropriate for highly fragmented, stochastic systems. We reveal that spatial aggregation of habitat tends to reduce the speed of advance throughout a wide range of species parameters: different dispersal distances and dispersal kernel shapes, and high and low extinction probabilities. In contrast, aggregation increases the steady-state proportion of habitat that is occupied (without climate change). Nonetheless, we find that it is possible to achieve both rapid advance and relatively high patch occupancy when the habitat has a "channeled" pattern, resembling corridors or chains of stepping stones. We adapt techniques from electrical circuit theory to predict the rate of advance efficiently for complex, realistic landscape patterns, whereas the rate cannot be predicted by any simple statistic of aggregation or fragmentation. Conservationists are already advocating corridors and stepping stones as important conservation tools under climate change, but they are vaguely defined and have so far lacked a convincing basis in fundamental population biology. Our work shows how to discriminate properties of a landscape's spatial pattern that affect the speed of colonization (including, but not limited to, patterns like corridors and chains of stepping stones), and properties that affect a species' probability of persistence once established. We can therefore point the way to better land use planning approaches, which will provide functional habitat linkages and also maintain local population viability.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Simulação por Computador , Modelos Biológicos
20.
PLoS One ; 7(7): e40496, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911701

RESUMO

The speed at which biological range expansions occur has important consequences for the conservation management of species experiencing climate change and for invasion by exotic organisms. Rates of dispersal and population growth are known to affect the speed of invasion, but little is known about the effect of having a community of dispersal phenotypes on the rate of range expansion. We use reaction-diffusion equations to model the invasion of a species with two dispersal phenotypes into a previously unoccupied landscape. These phenotypes differ in both their dispersal rate and population growth rate. We find that the presence of both phenotypes can result in faster range expansions than if only a single phenotype were present in the landscape. For biologically realistic parameters, the invasion can occur up to twice as fast as a result of this polymorphism. This has implications for predicting the speed of biological invasions, suggesting that speeds cannot just be predicted from looking at a single phenotype and that the full community of phenotypes needs to be taken into consideration.


Assuntos
Espécies Introduzidas , Polimorfismo Genético , Algoritmos , Simulação por Computador , Modelos Teóricos , Mutação , Fenótipo , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...